If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-12.5t-41=0
a = 4.9; b = -12.5; c = -41;
Δ = b2-4ac
Δ = -12.52-4·4.9·(-41)
Δ = 959.85
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12.5)-\sqrt{959.85}}{2*4.9}=\frac{12.5-\sqrt{959.85}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12.5)+\sqrt{959.85}}{2*4.9}=\frac{12.5+\sqrt{959.85}}{9.8} $
| 5-x=4x+1 | | 38=3u+8 | | 5x-3+11x-41=180 | | -x-10+2x=-1 | | 18=6x+8-5x | | 18t-8=2 | | X+2+4x=-13 | | 6b/17=8/17 | | 9(2w-4)=0 | | 15x^2+17x−4=0 | | -5(2y+3)+5=40 | | -2(x+1)=-2x(5) | | 3(x-2)=9× | | 4x^2-58=0 | | 7b−5/2=6b−5/7 | | N^2+2n=3n+6-2n= | | 3x*3x-6x=0 | | N=20(5+35)/1+0.04t | | 3=2+(2/z+2) | | 2÷x+7=4 | | 2x+8=3(x-9) | | 1=2/z+2 | | 7-x=-3-3X | | 3x=-5/4 | | −2x^2+5x=0 | | 3-2x=x+63 | | (1+x)^6=4 | | 35=5/4v | | 70x+34=180 | | 14x+19x-10=180 | | 48=p*3/7 | | 16-2n-5*n=65 |